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ABSTRACT

We derive the equations of chains for path geometries on surfaces by solv-

ing the equivalence problem of a related structure: sub-Riemannian geom-

etry of signature (1, 1) on a contact 3-manifold. This approach is signif-

icantly simpler than the standard method of solving the full equivalence

problem for path geometry. We then use these equations to give a charac-

terization of projective path geometries in terms of their chains (the chains

projected to the surface coincide with the paths) and study the chains of

four examples of homogeneous path geometries. In one of these examples

(horocycles in the hyperbolic planes) the projected chains are bicircular

quartics.
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1. Introduction

1.1. A quick reminder about path geometries on surfaces. A path

geometry on a surface consists of a surface Σ (a 2-dimensional differentiable

manifold) together with a non-degenerate 2-parameter family of unparametrized

curves in Σ. (This definition will be reformulated below more abstractly and

precisely; in particular, the non-degeneracy condition will be spelled out.) An

equivalence of path geometries on two surfaces is a diffeomorphism of the sur-

faces which maps the paths of one surface onto those of the other. A symmetry

of a path geometry on a surface is a self-equivalence.

The basic example is Σ = RP 2 (the 2-dimensional real projective plane)

equipped with the family of straight lines in it. A path geometry1 which is

locally equivalent to this example is called flat. A less obvious flat exam-

ple is given by all parabolas whose focus is at the origin (‘Kepler parabolas’;

here Σ := R
2 \ 0). It is doubly covered by straight lines via the (complex) qua-

dratic map z �→ z2.

Every path geometry is given locally by the graphs of solutions of a second-

order ODE y′′=f(x, y, y′). Conversely, a path geometry determines the ODE up

to so-called point transformations, that is, changes of coordinates (x, y) �→(x̃, ỹ).

The flat example of straight lines in RP 2 corresponds to y′′ = 0. A path geome-

try is projective if its paths are the (unparametrized) geodesics of a torsion-free

affine connection on Σ. Such path geometries correspond to ODEs y′′=f(x, y, y′)
where f is polynomial in y′ of degree at most 3. Note that, somewhat surpris-

ingly, this condition is independent of the coordinates x, y used on Σ. Thus a

‘generic’ path geometry is not projective, and in particular, non-flat. A non-

projective example is the path geometry in R2 whose paths are all circles of a

fixed radius.

A path geometry on a surface Σ defines a dual path geometry on the path

space Σ∗, whose paths are parametrized by Σ: for each point x ∈ Σ the cor-

responding path in Σ∗ consists of all paths in Σ passing through x. Clearly,

the dual of a flat path geometry is flat as well, an example of a self-dual path

geometry. The path geometry of circles of fixed radius in R2 is an example of

a self-dual non-projective path geometry. A projective path geometry is flat if

and only if its dual is projective as well.

1 We shall henceforth usually drop the qualifier “on a surface” since that is the only situ-

ation this article considers.
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Figure 1. A gallery of 2D path geometries: (a) Kepler el-

lipses of fixed major axis. (b) Kepler parabolas. (c) Straight

lines. (d) Circles of fixed radius. (e) Hooke ellipses of fixed

area. (f) Kepler ellipses of fixed minor axis. (g) Kepler el-

lipses tangent to a fixed Kepler ellipse. (h) Circles tangent to

a fixed circle (horocycles). Equivalence and duality relations

among these geometries are: a ≈ e ≈ f, b ≈ c ≈ g (flat),

a∗ ≈ h, b∗ ≈ b, d∗ ≈ d.

A flat path geometry admits an 8-dimensional (local) group of symmetries

(the projective group PSL3(R)), the maximum dimension possible for a path

geometry. Conversely, a path geometry admitting an 8-dimensional local group

of symmetries is necessarily flat (a theorem of Sophus Lie). The sub-maximal

symmetry dimension, i.e., the maximum dimension of the local symmetry group

of a non-flat path geometry, is 3. The path geometry of circles with a fixed

radius is sub-maximal. Its symmetry group is the Euclidean group. Another

sub-maximal example is given by central ellipses (‘Hooke ellipses’) of fixed area,

where the symmetry group SL2(R) acts by its standard linear action on R2

(here Σ = R2 \ 0). In contrast to the previous example of circles with fixed

radius, this example is projective and non–self-dual: its dual is the hyperbolic
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plane and the paths are the horocycles (in the Poincaré disk or upper half-plane

model horocycles are the circles tangent to the boundary; see Section 4.4 below).

The subject was studied extensively in the second half of the 19th century by

Roger Liouville (a relative of the more famous Joseph Liouville), Sophus Lie and

his student Arthur Tresse, who produced a local classification, over the complex

numbers, of sub-maximal path geometries (i.e., those admitting a 3-dimensional

group of symmetries) [25]. This classification has been since refined over the

real numbers [14]. The only non-flat projective items on the list are the above

mentioned case of Hooke ellipses of fixed area and Hooke hyperbolas of fixed

discriminant (see Table 2 in the Appendix of [3] for several equivalent models

of these path geometries).

1.2. An abstract reformulation of path geometry. We describe here

briefly a more abstract and rigorous reformulation of path geometries on sur-

faces, useful also for introducing chains. For further details we recommend

V. I. Arnol’d’s book [1, Chapter 1, Section 6].

Given a surface Σ, let PTΣ be the (3-dimensional) total space of its projec-

tivized tangent bundle. That is, a point in PTΣ corresponds to a point in Σ

together with a tangent line at the point (a 1-dimensional linear subspace of the

tangent space at the point). There is a standard contact distribution D on PTΣ,

given by the ‘skating’ condition: “the point moves along the line”, or “the line

rotates about the point.” The fibers of the base point projection PTΣ → Σ

are integral curves of D. Their tangents form the vertical line field L1 ⊂ D. A

path γ ⊂ Σ is lifted to PTΣ by mapping a point on γ to the tangent line to γ at

this point. The lifted curve is clearly an integral curve of D, as it satisfies the

skating condition. The non-degeneracy assumption on a path geometry on Σ is

that the lifted paths form a smooth 1-dimensional foliation of PTΣ, transverse

to L1 (in D); equivalently, the tangent lines to the lifted curves form a smooth

line field L2 ⊂ D, complementary to L1, so that

D = L1 ⊕ L2.

We thus arrive at an abstract reformulation of a path geometry:

Definition 1.1: A (2-dimensional) path geometry is a smooth 3-manifold M

together with an (ordered) pair of smooth line fields L1, L2 ⊂ TM , spanning

a contact distribution D = L1 ⊕ L2. The path geometry dual to (M,L1, L2)

is (M,L2, L1).



Vol. TBD, 2024 CHAINS OF PATH GEOMETRIES ON SURFACES 5

Remark 1.2: Another common name for (M,L1, L2) is a para-CR struc-

ture, due to the formal similarity with a (Levi-non-degenerate) CR struc-

ture (M,D, J). The latter is a contact distribution D on a 3-manifold M

together with a complex structure J ∈ End(D), i.e., J2 = − idD; equivalently,

it is a splitting D ⊗ C = D1,0 ⊕ D0,1, the direct sum of a conjugate pair of

complex line bundles (the ±i-eigenbundles of J ⊗ C).

In the real-analytic setting, CR and para-CR structures have a common com-

plexification: a complex 3-manifold together with a pair of (complex) line fields

spanning a (complex) contact distribution.

Remark 1.3: Some authors define a path geometry as a 2-parameter family of

curves on a surface Σ, a unique curve through any given point of Σ in any given

direction (see, e.g., the first paragraph of [15], or the “fancy formulation” of [19,

Section 8.6]). Definition 1.1 is more precise and general: first, the surface Σ is

recovered from (M,L1, L2) as the space of integral curves of L1, which may exist

as a smooth surface only locally. Second, even if Σ exists, the set of directions at

a given x ∈ Σ for which a curve exists may be only an open subset in PTxΣ. For

example, for the path geometry of Hooke (or central) ellipses in R2 \ 0 a curve

exists only in non-radial directions. Third, there may be more than one curve

in a given direction. For example, for circles of fixed radius in R2, there are two

circles passing through each point in a given direction. This can be remedied by

considering instead oriented circles of fixed radius and the spherized tangent

bundle STR2 (that is, TR2, with the zero section removed, mod R+) instead of

PTR2. An analogous remedy applies to the aforementioned path geometry of

horocycles in the hyperbolic plane.

We shall not dwell here further on these details and refer the interested reader

to [6, Sections 4.2.3 and 4.4.3], where our notion of a path geometry on a surface

is called both a generalized path geometry and a Lagrangean contact structure

on a 3-manifold; the two notions differ in higher dimension.

1.3. Chains of path geometries via the Fefferman metric. In the CR

case there is a well-known, naturally associated 4-parameter family of curves

on M , called chains, one chain for each given point in M in a given direc-

tion transverse to the contact distribution. They are considered the CR analog

of geodesics in Riemannian geometry (see the recent article [12] for a varia-

tional formulation). Chains were introduced by É. Cartan while solving the

equivalence problem of CR geometry [10, 20] and were studied extensively by
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many authors, such as Chern–Moser [13] and C. Fefferman [17], who showed

that they arise from a natural construction, considerably simpler than Cartan’s,

nowadays called the Fefferman metric: a conformal Lorentzian metric, i.e., of

signature (3, 1), defined on the total space of a certain circle bundle overM . The

chains of the CR structure are then the projections onto M of the non-vertical

null geodesics of the Fefferman metric.

Similarly, to each path geometry (M,L1, L2) one can associate a natural 4-

parameter family of curves on M , a unique curve through any given point in M

in any given direction transverse to the contact distribution D := L1⊕L2. The

study of this natural class of curves is quite recent. The earliest reference we

know of is a 2005 article of A. Čap and V. Žádńık [7] (path geometries on surfaces

appear there in Section 2 as 3-dimensional Lagrangean contact structures). See

also [6, Sections 5.3.7–8 and 5.3.13–14]. Both references define chains using the

associated Cartan geometry. However, as in the CR case, there is a significant

shortcut via the Fefferman metric. This is a conformal metric of signature (2, 2)

on the total space of an R∗-bundle over M , and the chains are the projections

onto M of non-vertical null geodesics of the Fefferman metric. In this article

we explain this construction and use it to give several concrete examples.

Remark 1.4: As mentioned in Remark 1.3, path geometries on surfaces general-

ize in higher dimension to both (generalized) path geometries and Lagrangean

contact geometries. The Fefferman-type construction of a conformal structure

described here generalizes in higher dimensions to Lagrangean contact struc-

tures but not to path geometries.

1.4. Contents of the article. In the next section we re-derive, as a warm-

up and a reminder, the Fefferman metric for a CR structure (M,D, J). The

construction appeared first in Fefferman’s article [17] for a CR manifold embed-

ded as a real hypersurface in a complex manifold, followed by intrinsic construc-

tions, first direct ones in [16, 22], then more advanced constructions that use

the full solution of the equivalence problem for CR structures (Cartan bundle

and connection), such as [5,7,23]. We view instead a CR structure as a confor-

mal class of sub-Riemannian geometries of contact type, solve the equivalence

problem of sub-Riemannian geometries of contact type following [18]—which is

much simpler than that for CR geometry, use a sub-Riemannian metric on D

to define a Lorentzian metric on SD (the spherization of D), then show that



Vol. TBD, 2024 CHAINS OF PATH GEOMETRIES ON SURFACES 7

conformally equivalent sub-Riemannian metrics on D induce conformally equiv-

alent Lorentzian metrics on SD. In retrospect, our construction can be regarded

as a shorter version of [16,22], using [18]. It is still too complicated conceptually

for our taste, and the formula (9) below for the metric appears a bit like magic,

but this method is the best we have so far and is quite easy to work with.

Once the construction of the Fefferman metric for CR geometry is understood,

we construct in Section 3 in a similar fashion the Fefferman metric for a path

geometry. As far as we know, our derivation is new, and before this article

the only available construction of the Fefferman metric for path geometry has

been via the solution of the full equivalence problem for such a structure (see,

e.g., [7, 23]), which is considerably more involved than our derivation.

In Section 3.2 we prove the following theorem, apparently new:

Theorem 1: A path geometry on a surface Σ is projective if and only if the

chains on PTΣ project to the paths in Σ.

In the last section we study in some detail the chains of four homogeneous

path geometries mentioned above: straight lines, circles of fixed radius, central

ellipses of fixed area and horocycles in the hyperbolic plane.

Acknowledgments. We thank the anonymous reviewer for some useful sug-

gestions. GB acknowledges support from CONACYT Grant A1-S-45886. TW

is grateful for support and hospitality from CIMAT during an extended visit in

the 2019–20 academic year and for support from Guilford College.

2. The Fefferman metric for CR 3-manifolds (revisited)

Let (M,D, J) be a CR 3-manifold, i.e., D ⊂ TM is a contact 2-distribution

(that is, [D,D] = TM) and J ∈ End(D) satisfies J2 = − idD. Canonically

associated to the CR structure is a circle bundle SD → M , the ‘spherization’

of D, with a conformal class of metrics of signature (3, 1) on SD, the Fefferman

metric. It depends on the second-order jet of the CR structure, so is not so easy

to see. The fibers of SD → M are null geodesics, and the projections of the

non-vertical null geodesics to M are the chains of the CR structure, forming

a 4-parameter family of curves on M .
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The construction. Fix a positive contact form η3 on M , i.e., a 1-form sat-

isfying

D = Ker(η3),(1)

dη3(X, JX) > 0 for every X ∈ D, X 	= 0.(2)

Remark 2.1: A general contact manifold does not admit necessarily a global

contact form (a 1-form whose kernel is D) but the contact structure of a CR

manifold does, using the orientation of D induced by J . If M is connected then

any global contact form is either positive or negative.

Recall that the coframe bundle π : F ∗ → M is the principal GL3(R)-bundle

whose fiber at a point x ∈ M consists of all linear isomorphisms u : TxM → R3.

The tautological 1-form on F ∗ is the R3-valued 1-form ω whose value at u∈F ∗

is u ◦ (dπ)u.
Now a positive contact form η3 on M defines a positive-definite inner product

on D, 〈X,Y 〉 := dη3(X, JY ). An adapted coframe is an extension of η3 to a

coframe η = (η1, η2, η3)t (we view elements of R3 as column vectors), satisfying

dη3 = η1 ∧ η2,(3)

〈·, ·〉 = [(η1)2 + (η2)2]|D.(4)

It is easy to show that for a fixed η3 these 2 equations define a circle’s worth

of coframes at each x ∈ M . Thus, let S1 ⊂ GL3(R) be the set of matrices of

the form ⎛
⎜⎝cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

⎞
⎟⎠ ,

and B ⊂ F ∗ the set of coframes adapted to η3. Then B → M is a principal

S1-subbundle, an S1-reduction of F ∗, whose local sections consist of adapted

coframes.

We continue to denote by ω = (ω1, ω2, ω3)t the restriction of the tautological

1-form on F ∗ to B. Then there are a unique 1-form α and functions a1, a2 on

B such that

d

⎛
⎜⎝ω1

ω2

ω3

⎞
⎟⎠ = −

⎛
⎜⎝ 0 α 0

−α 0 0

0 0 0

⎞
⎟⎠ ∧

⎛
⎜⎝ω1

ω2

ω3

⎞
⎟⎠+

⎛
⎜⎝a1 a2 0

a2 −a1 0

0 0 1

⎞
⎟⎠
⎛
⎜⎝ω2 ∧ ω3

ω3 ∧ ω1

ω1 ∧ ω2

⎞
⎟⎠ .(5)
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(See [18, equation (1)].) Furthermore, there are unique functions b1, b2,K on B

such that

(6) dα = b1ω
2 ∧ ω3 + b2ω

3 ∧ ω1 +Kω1 ∧ ω2.

(See [18, equation (4)]; in fact, K descends to M . Also, α is essentially the

Webster connection form [26], a1, a2 its torsion, and K the Webster scalar

curvature.)

Define a Lorentzian metric on B by

(7) g := ω1 · ω1 + ω2 · ω2 + ω3 · σ,

where σ is a 1-form, to be determined later, and · is the symmetric product of

1-forms.

Let SD be the ‘spherization’ (or ‘ray projectivization’) of D, i.e., the quotient

of D with the zero section removed, by the dilation action of R+. There is

an obvious S1-action on D, commuting with the R+-action, thus making SD

a principal S1-bundle. Note that SD, unlike B, is canonically associated to

(M,D, J): to define B we needed to choose the positive contact form η3. Define

an isomorphism of principal S1-bundles

(8) h : B → SD, u �→ [u−1e1],

where e1 = (1, 0, 0)t. That is, h(u) = [X ] ∈ SD, where X ∈ D is the unique

vector in TxM , x = π(u), satisfying u1(X) = 1, u2(X) = u3(X) = 0. We then

use h to map the Lorentzian metric on B of equation (7) to a Lorentzian metric

on SD. In general, for arbitrary σ in formula (7), the resulting metric on SD

depends on the choice of η3 in a complicated way, but for a careful choice of σ

the conformal class of the Lorentzian metric on SD is independent of the choice

of η3.

Remark 2.2: There are other models for the underlying space of the Feffer-

man metric instead of SD (a matter of taste). For example, one can take the

spherization of the dual bundle D∨, in which case the formula for the identifica-

tion B → SD∨ is a little simpler: u �→ [u1|D]. Another model is the spherization

of the canonical bundle Λ2,0D ⊂ Λ2T ∗D⊗C, as in [22]; the identification with B

in this case is u �→ [u3 ∧ (u1 + iu2)|D]. Also, the metric on SD is invariant un-

der the antipodal map in each fiber (a circle), and so it descends to the (full)

projectivization PD.
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The following theorem is Theorem (3.8) of [22], or the theorem on page 41

of [16]. Our proof is essentially that of [22], reformulated so as to facilitate its

extension in the next section to path geometries.

Theorem 2: Let (M,D, J) be a CR 3-manifold, SD → M the spherization

of D and η3 any positive contact 1-form, as in equations (1) and (2). Define a

1-form σ on the total space of the associated circle bundle B → M ,

(9) σ =
4

3
α− 1

3
Kω3,

where α,K are defined via equations (5) and (6). Then the conformal class of

the Lorentzian metric induced on SD by equation (7), via the isomorphism (8),

is independent of the choice of η3. In fact, multiplying η3 by a positive function

rescales the induced metric on SD by the same factor.

Proof. If η3 is a positive contact form on M , then any other positive contact

form is of the form η̃3 = λ2η3, for some positive function λ : M → R+. Chang-

ing η3 to η̃3 changes B to B̃, another S1-reduction of the coframe bundle of M ,

with corresponding metric g̃ and isomorphism h̃ : B̃ → SD. We thus need to

show that the composition f := h̃−1 ◦ h : B → B̃ satisfies f∗(g̃) = λ2g.

Let us pull-back λ to B by the projection B → M , denoting the result by λ

as well. Then

(10) dλ = λiω
i, dλi = λi0α+ λijω

j,

for some functions λi, λij , λi0 on B, 1 ≤ i, j ≤ 3. (Note that by definition λ

descends to M ; in general the λi do not, but λ3 does.)

Lemma 2.3:

λ10 = −λ2, λ20 = λ1, λ12 − λ21 = λ3.

Proof. These identities follow immediately from expanding d(dλ) = 0.

Now a section η = (η1, η2, η3) : M → B of B → M is a coframe adapted

to η3, so f ◦η : M → B̃ is a section of B̃ → M , a coframe adapted to η̃3 = λ2η3.

Lemma 2.4: f ◦ η = Λη, where

Λ =

⎛
⎜⎝λ 0 −2λ2

0 λ 2λ1

0 0 λ2

⎞
⎟⎠ .
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Proof. It is enough to check that η̃ := Λη satisfies equations (1)–(4) above,

with η̃3 = λ2η3 instead of η3, as well as η̃1(X̃) = 1, η̃2(X̃) = η̃3(X̃) = 0

for X̃ = X/λ.

Lemma 2.5: f∗ωB̃ = ΛωB.

Proof. Let η ∈ B, η̃ = f(η). By Lemma 2.4, η̃ = Λη, hence

(f∗ωB̃)η = (ωB̃)η̃ ◦ (df)η = η̃ ◦ (dπ̃)η̃ ◦ (df)η
= η̃ ◦ d(π̃ ◦ f)η = η̃ ◦ (dπ)η = Λη ◦ dπη = Λ(ωB)η.

Notation: For sake of readability, we adopt henceforth the following abbreviated

notation:

ω := ωB, g := gB, . . . , ω̃ := f∗ωB̃, g̃ := f∗gB̃, . . . , etc.

Thus, for example, Lemma 2.5 reads ω̃ = Λω.

We proceed with the proof of Theorem 2. It is clearly enough to show an

infinitesimal version of the claimed conformal invariance. Suppose λ = λ(t) is

differentiable and that it satisfies λ(0) = 1. Denote by a dot the derivative with

respect to t at t = 0 of objects on B̃ pulled back to B by f , e.g., λ̇ = λ′(0),
λ̇i = λ′

i(0), λ̇ij = λ′
ij(0), ġ = d

dt |t=0g̃, etc. Then g̃ = λ2g if and only if ġ = 2λ̇g

(for all η3 and λ(t) satisfying λ(0) = 1). Now calculate using the previous

lemmas:

ω̇1 = λ̇ω1 − 2λ̇1ω
3, ω̇2 = λ̇ω2 + 2λ̇2ω

3, ω̇3 = 2λ̇ω3,

ġ = 2λ̇g + (σ̇ − 4λ̇2ω
1 + 4λ̇1ω

2) · ω3.

Thus ġ = 2λ̇g if and only if

(11) σ̇ = 4(λ̇2ω
1 − λ̇1ω

2).

To calculate σ̇, using formula (9), we need formulas for α̇ and K̇. To find α̇

we find first a formula for α̃. Write the structure equations (5) for ω̃, substi-

tute ω̃ = Λω, and equate coefficients. The result is

α̃ = α+ 3
λ2

λ
ω1 − 3

λ1

λ
ω2 −

[
3
(λ1)

2 + (λ2)
2

λ2
+

λ11 + λ22

λ

]
ω3.

Taking derivative with respect to t at t = 0 of the last formula, we get

α̇ = 3λ̇2ω
1 − 3λ̇1ω

2 − (λ̇11 + λ̇22)ω
3.
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To find K̇ there is a shortcut, avoiding an explicit formula for K̃, by not-

ing first that K is defined by dα ≡ Kω1 ∧ ω2 (mod α, ω3). Taking d of the

above formula for α̇, we get, using equations (10), dα̇ ≡ −4(λ̇11 + λ̇22)ω
1 ∧ ω2

(mod α, ω3). Taking derivative with respect to t of dα̃ ≡ K̃ω̃1∧ ω̃2 (mod α̃, ω̃3),

we get dα̇ ≡ (K̇ + 2λ̇K)ω1 ∧ ω2 (mod α, ω3), hence

K̇ = −2λ̇K − 4(λ̇11 + λ̇22).

Now using the above expressions for α̇, K̇ and ω̇3, we obtain from equation (9)

σ̇ =
4

3
α̇− 1

3
(K̇ω3 +Kω̇3) = 4(λ̇2ω

1 − λ̇1ω
2),

as needed.

2.1. Example: left-invariant CR structures on SU2. The left-invariant

su2-valued Maurer–Cartan form on SU2 is

(12) Θ = g−1dg =

(
iθ1 θ2 + iθ3

−θ2 + iθ3 −iθ1

)
.

The Maurer–Cartan equation dΘ = −Θ ∧Θ gives

(13) dθ1 = −2θ2 ∧ θ3, dθ2 = −2θ3 ∧ θ1, dθ3 = −2θ1 ∧ θ2.

For each t ∈ [1,∞) let

η1 =
√
t θ1, η2 = θ2/

√
t, η3 = −θ3/2.

One can show that every left-invariant CR structure D0,1 ⊂ TSU2⊗C is equiva-

lent (via right translation), for a unique t ∈ [1,∞), to {η1+ iη2, η3}⊥. For t = 1

we obtain the standard ‘spherical’ CR structure on SU2 � S3. For t > 1 these

are non-spherical CR structures. Distinct t determine inequivalent structures

(see [3], Prop. 5.1). We use (13) to find

dη1 = 4t η2 ∧ η3, dη2 = (4/t)η3 ∧ η1, dη3 = η1 ∧ η2.

Using this coframe we identify B � SU2 × S1 and ω = ū · η, where u = eiϕ.

Explicitly,

ω1=
√
t(cos θ)θ1+

1√
t
(sin θ)θ2, ω2=−√

t(sin θ)θ1+
1√
t
(cos θ)θ2, ω3=−1

2
θ3.

Inserting these into equations (5)–(6), we obtain

α = θ4 −
(
t+

1

t

)
θ3, K = 2

(
t+

1

t

)
,
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where θ4 := dϕ. Inserting all this into equations (7)–(9), we get

g = t(θ1)2 +
1

t
(θ2)2 +

1

2

(
t+

1

t

)
(θ3)2 − 2

3
θ3 · θ4.

This is essentially formula (15) of [11]; the coefficient of our θ3 · θ4 term can be

made to agree with the cited formula by rescaling the ϕ coordinate by a constant.

See also [11] for a study of the chains of this example via null geodesics of the

Fefferman metric.

3. The Fefferman metric for path geometries

Let (M,L1, L2) be a path geometry, i.e., L1, L2 is a pair of line fields on a 3-

manifold M , spanning a contact distribution D := L1⊕L2. Let us fix a contact

form η3, that is,

D = Ker(η3)

(possibly defined only locally, see Remark 3.1 below). An adapted coframe

(with respect to η3) is an extension of η3 to a (local) coframe (η1, η2, η3) satis-

fying

dη3 = η1 ∧ η2,(14)

η1|L2 = η2|L1 = 0.(15)

These equations define an R
∗-structure, i.e., an R∗-principal subbundle B ⊂ F ∗,

whose local sections are the coframes adapted to η3, where s ∈ R
∗ acts by

(η1, η2, η3) �→ (η1/s, sη2, η3).

Let D∗ = D \ (L1 ∪ L2) ⊂ D, with spherization SD∗ ⊂ SD. The Fefferman

metric associated to the path geometry is a conformal pseudo-Riemannian met-

ric of signature (2, 2) on SD∗. We shall define it in a manner similar to the CR

case. The splitting D = L1⊕L2 defines an involution J ∈ End(D), J2 = id, by

(16) J(X1 +X2) = X1 −X2, Xi ∈ Li, i = 1, 2.

The contact form η3 defines on D an area form, dη3|D, and an indefinite metric

of signature (1, 1),

〈X,Y 〉 := dη3(X, JY ).

Now D∗ = D+∪D−, where D± are the positive (resp. negative) vectors with re-

spect to 〈·, ·〉, and corresponding decomposition SD∗ = SD+∪SD−. Both SD±



14 G. BOR AND T. WILLSE Isr. J. Math.

are R∗-principal bundles over M , where s ∈ R∗ acts by

[X1 +X2] �→ [sX1 +X2/s], Xi ∈ Li.

Note that D± are interchanged by J or by taking −η3 instead of η3. There is

an identification of R∗-principal bundles,

(17) h : B → SD+, u �→ [X ], where u1(X) = u2(X) = 1, u3(X) = 0.

We shall define a pseudo-Riemannian metric of signature (2, 2) on B, map it

by h to SD+, then by J to SD−. As in the CR case, we show that the associated

conformal class of metrics on SD∗ is independent of the chosen contact form η3.

Remark 3.1: A general contact 3-manifold is naturally oriented. The Lie bracket

of sections of D defines an isomorphism Λ2(D) → TM/D, but these isomorphic

line bundles need not be trivial, i.e., there might not exist onM a global contact

form (a non-vanishing section of D⊥ � (TM/D)∗). In the CR case, J defines

an orientation of D ⊂ TM , hence of TM/D as well (since TM is oriented), and

a dual orientation of D⊥ = (TM/D)∗, so there is always a global contact form.

This is not the case for a path geometry (e.g., M = PTR2, equipped with the

standard flat path geometry). But this topological difficulty is minor, we can

still define B locally, then show that the conformal structures defined on SD∗

restricted to open subsets of M agree on intersections. We shall not dwell on

the details.

We shall now proceed with the plan outlined above, in the paragraph before

Remark 3.1.

The structure equations for any R∗-connection form α on B → M are

d

⎛
⎜⎝ω1

ω2

ω3

⎞
⎟⎠ = −

⎛
⎜⎝α 0 0

0 −α 0

0 0 0

⎞
⎟⎠ ∧

⎛
⎜⎝ω1

ω2

ω3

⎞
⎟⎠+

⎛
⎜⎝T 1

23 T 1
31 T 1

12

T 2
23 T 2

31 T 2
12

0 0 1

⎞
⎟⎠
⎛
⎜⎝ω2 ∧ ω3

ω3 ∧ ω1

ω1 ∧ ω2

⎞
⎟⎠ ,

where T i
jk are some real functions on B (the coefficients of the torsion tensor

of the connection). Starting from any such connection it is easy to show that

it can be modified, in a unique way, by adding to α multiples of the ωi, so as

to render

T 1
31 = T 1

12 = T 2
12 = 0

(in fact doing so also solves the equivalence problem for path geometry equipped

with a fixed contact form). Taking the exterior derivative of dω3 = ω1∧ω2 shows
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that T 2
23 = 0 as well. The structure equations now become

(18)

dω1 = −α ∧ ω1 + a1ω
2 ∧ ω3,

dω2 = α ∧ ω2 + a2ω
3 ∧ ω1,

dω3 = ω1 ∧ ω2,

for some functions a1, a2 on B. Taking exterior derivative of these equations we

get

dα = b1ω
2 ∧ ω3 + b2ω

3 ∧ ω1 +Kω1 ∧ ω2(19)

for some functions b1, b2,K on B (i.e., dα is semi-basic, containing no α ∧ ωi

terms).

Theorem 3: Let (M,L1, L2) be a path geometry and SD∗ ⊂ SD the set of rays

in D = L1⊕L2 not contained in L1∪L2. Then there is a canonically associated

conformal class of metrics of signature (2, 2) on SD∗, called the Fefferman met-

ric, defined as follows. Associated with each contact 1-form η3 on M is an R
∗-

reduction B → M of the coframe bundle of M , given by equations (14)–(15), a

unique R∗-connection form α on B satisfying equations (18) and the 1-form

(20) σ := −2

3
α+

1

6
Kω3,

where K is defined via equations (19), and where ω1, ω2, ω3 are the tautological

1-forms on the coframe bundle of M restricted to B. Then

(21) g := ω1 · ω2 + ω3 · σ

is a pseudo-Riemannian metric on B of signature (2, 2). There is also associated

with η3 a decomposition SD∗ = SD+ ∪ SD− and R∗-isomorphisms

h : B → SD+, J ◦ h : B → D−,

where h is given by equation (17) and J by equation (16), such that the con-

formal class of the induced metric on SD∗ is independent of the choice of η3;

in fact, multiplying η3 by a smooth non-vanishing function rescales the induced

metric on SD∗ by the same factor.
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Proof. The proof is very similar to the CR case. Here are the formulas that

differ:

λ10 = λ1, λ20 = −λ2, λ12 − λ21 = λ3,

α̃ = α+
3λ1

λ
ω1 − 3λ2

λ
ω2 −

(λ12 + λ21

λ
+

6λ1λ2

λ2

)
ω3,

α̇ = 3λ̇1ω
1 − 3λ̇2ω

2 − (λ̇12 + λ̇21)ω
3,

dα̇ ≡ −4(λ̇12 + λ̇21)ω
1 ∧ ω2 ≡ (K̇ + 2λ̇K)ω1 ∧ ω2 (mod α, ω3),

K̇ = −2λ̇K − 4(λ̇12 + λ̇21),

ġ = 2λ̇g + (σ̇ + 2λ̇1ω
1 − 2λ̇2ω

2).

Definition 3.2: A chain of a path geometry (M,L1, L2) is the projection to M

of an unparametrized non-vertical null geodesic of the associated Fefferman

conformal metric on SD∗.
Proposition 3.3:

(1) The R∗-action on SD∗ is by conformal isometries.

(2) For every point in M , in every given direction transverse to D, there is

a unique chain passing through this point in the given direction.

(3) The fibers of SD∗ → M are null geodesics and project to constant

curves on M .

Proof. (1) For every contact form η3, the map h : B → SD+ (by definition,

a conformal isometry) is R∗-equivariant, hence it is enough to verify that the

pseudo-Riemannian metric on B given by equations (20)–(21) is R∗-invariant.
This follows from the R∗-invariance of α, ω3,K and the R∗-equivariance

R∗
sω

1 = ω1/s, R∗
sω

2 = sω2.

(2) Let x ∈ M and v ∈ TxM, v 	∈ Dx. Pick a contact form η3 and work on the

associated bundle B. The fiber Bx consists of coframes u = (u1, u2, u3) on TxM

adapted to η3, as in equations (14)–(15). We show that for every u ∈ Bx there

is a unique lift ṽ ∈ TuB of v which is null. Now ṽ is a lift of v if and only

if ωi(ṽ) = ui(v), i = 1, 2, 3. It remains to determine σ(ṽ). Now

ω3(ṽ) = u3(v) 	= 0

and, by formula (21), ṽ is null if and only if ω1(ṽ)ω2(ṽ) + ω3(ṽ)σ(ṽ) = 0, i.e.,

σ(ṽ) = −u1(v)u2(v)/u3(v). This shows that v ∈ TxM has a unique null lift

at u ∈ Bx. The null geodesic through u in the direction of ṽ projects to a chain
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through x in the direction of v. This proves existence of the required chain. As

for uniqueness, we need to show that if we repeat the above at another point

of Bx, say s · u ∈ Bx, we obtain the same chain. We use the fact that s acts

on B by isometries Rs, mapping ṽ to the unique null-lift of v at s · u, and the

null geodesic through u tangent to ṽ to the null geodesic through s · u in the

direction of (Rs)∗ṽ. Since Rs commutes with the projection B → M , the two

null geodesics project to the same chain in M .

(3) The vertical distribution of B → M is given by

ω1 = ω2 = ω3 = 0,

thus g = ω1 ·ω2+ω3 ·σ restricted to the fibers vanishes, so these fibers are null

curves. We proceed to show that they are null geodesics.

As shown in part (1) above, the principal R∗-action on B is isometric. Let ζ

denote an infinitesimal generator of this action (i.e., a nonzero vertical null

Killing vector field on B). The fibers of B → M are the integral curves

of ζ, hence to show that these fibers are null geodesics it is enough to show

that ∇ζζ = 0, or in index notation,

ζb∇bζ
a = 0.

Lowering an index of ∇bζ
a (using g), splitting ∇bζa into its symmetric and

antisymmetric parts, and contracting with ζb gives

(22) ζb∇bζa = ζb · 1
2
(∇aζb +∇bζa) + ζb · 1

2
(∇aζb −∇bζa).

The quantity 1
2 (∇aζb +∇bζa) in the first term is (Lζg)ab, but, per part (1), g

is ζ-invariant—that is, Lξg = 0—and so the first term vanishes.

The quantity 1
2 (∇aζb−∇bζa) in the second term is (dζ�)ab, so the second term

is −ιζ(dζ
�), where ιζ denotes interior multiplication by ζ. Since ζ generates the

R∗-action on B → M and α is a connection form thereon, α(ζ) is a nonzero con-

stant, and by rescaling ζ by a nonzero constant we may as well assume α(ζ) = 3.

Lowering an index with g (equations (20)–(21)) then gives ζ� = −ω3, so the

third equation of (18) yields −ιζ(dζ
�) = ιζdω

3 = ιζ(ω
1 ∧ ω2) = 0.

Remark 3.4: In fact, chains come equipped with a preferred projective structure

(see, e.g., [6, Theorem 5.3.7], which applies to all so-called parabolic contact

structures), but we do not need that structure here.
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3.1. Chains of y′′ = f(x, y, y′). Here Σ = J0(R,R) = R2, with coordi-

nates (x, y), and M = J1(R,R) = R3, with coordinates (x, y, p) and contact

distribution D = Ker(dy − p dx). The paths in Σ are graphs of solutions y(x)

to y′′ = f(x, y, y′), and their lifts to M are graphs of their first jets,

(x, y(x)) �→ (x, y(x), y′(x)).

So here

L1 = Span(∂p), L2 = Span[∂x + p∂y + f(x, y, p)∂p].

We fix the contact form η3 := dy− p dx. An adapted coframe on M , satisfying

equations (14)–(15), is

(23) η1 := dp− fdx, η2 := −dx, η3 := dy − p dx.

Any other adapted coframe is of the form

s · η = (η1/s, sη2, η3)t, s : M → R
∗.

This defines an identification R
3 × R∗ → B,

(x, y, p, s) �→ s · η(x, y, p).

Under this identification,

(24) ω1 = η1/s, ω2 = sη2, ω3 = η3.

The following proposition was proved in [23, equation (31)] by solving the full

equivalence problem for path geometry.

Proposition 3.5: The Fefferman metric on B = J1(R,R)× R∗ is

(25) g = −dx · (dp− fdx) +
1

6
(dy − p dx) · [4fpdx+ fpp(dy − p dx)− 4dτ ],

where dτ = ds/s.

Proof. Solving equations (18)–(19), with ωi given by equations (23)–(24), we

obtain

α = −fpdx+ dτ, K = fpp =⇒ σ =
2

3
fpdx +

1

6
fpp(dy − pdx)− 2

3
dτ .

Using this in equations (20)–(21) gives the claimed formula.
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Proposition 3.6: The chains of the path geometry corresponding to a 2nd

order ODE y′′ = f(x, y, y′) are the curves in J1(R,R) which are the graphs of

solutions (y(x), p(x)) of the system

y′′ =f + fpΔ+
1

2
fppΔ

2 +
1

6
fpppΔ

3(26)

p′′ =− 2(p′ − f)2

Δ
+ fp(3p

′ − 2f) + fx + pfy + [fpp(p
′ − f) + 2fy]Δ

+
1

6
[fppp(p

′ − 2f)− fxpp + 4fyp − pfypp)]Δ
2,

(27)

where Δ = y′ − p.

Proof. Using the metric (25), we write the geodesic equations on B,

ẍ =
1

6
[(pẋ− ẏ)(fppp(ẏ − pẋ) + 2ẋfpp)− 2ẋ2fp − 4τ̇ ẋ],

ÿ =
1

6
[2ẋ(pfpp(pẋ− ẏ)− pẋfp − 2pτ̇ + 3ṗ)− pfppp(ẏ − pẋ)2],

p̈ =
1

6
[− p3ẋ2fypp + 2p2ẋẏfypp + 4p2ẋ2fyp

− 2f((ẏ − pẋ)(fppp(ẏ − pẋ) + 2ẋfpp) + 2ẋ2fp + 4τ̇ ẋ)

+ 2ṗfpp(ẏ − pẋ)− fxpp(ẏ − pẋ)2 − 8pẋẏfyp − 6pẋ2fy

+ 8ṗẋfp − pẏ2fypp + 12ẋẏfy + 6ẋ2fx + 4ẏ2fyp + 4ṗτ̇ ].

(We do not need the τ equation.) Next use formula (25) and the nullity condi-

tion to solve for τ̇ ,

τ̇ =
1

4
(fpp(ẏ − pẋ) + 4ẋfp)− 3

2

ẋ(ṗ− fẋ)

(ẏ − pẋ)
,

then use this to eliminate τ̇ from the expression for p̈ (τ itself does not ap-

pear explicitly, because of the R∗-invariance of the metric). Then substitute

into y′′ = (ÿẋ− ẍẏ)/ẋ3, p′′ = (p̈ẋ− ẍṗ)/ẋ3 the expressions for ẍ, ÿ, p̈ from the

geodesic equations, and finally make the substitutions ẏ = ẋy′, ṗ = ẋp′ to ob-

tain the desired equations (all instances of ẋ cancel out because the geodesic

equation is homogeneously quadratic in velocities).

3.2. Chains of projective path geometries. Here we prove Theorem 1,

which was announced in the introduction. Recall that, by definition, a path

geometry is projective if the paths are the (unparametrized) geodesics of a

torsion-free affine connection.
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Theorem 1: A path geometry on a 2-dimensional manifold Σ is projective if

and only if all chains on PTΣ project to the paths in Σ.

Proof. This is a local statement so we can assume without loss of generality the

situation studied in the previous subsection, i.e., the paths are given in the xy

plane by graphs of solutions y(x) of y′′ = f(x, y, y′) for some smooth f , and

the associated chains in xyp-space are the graphs of solutions (y(x), p(x)) to

the chain equations (26)–(27) of Proposition 3.6. As is well known, such a path

geometry is projective if and only if f(x, y, p) is a polynomial in p of degree at

most 3 (see [9], also Section 4 of [14]). The statement we are to prove therefore

reduces to the following lemma:

Lemma 3.7: Every solution (y(x), p(x)) of equations (26)–(27) satisfies

y′′ = f(x, y, y′)

if and only if f(x, y, p) is polynomial in p of degree at most 3.

We proceed with the proof of the lemma. Assume f(x, y, p) is polynomial

in p of degree ≤ 3. Then f(x, y, y′) is given by the cubic Taylor polynomial of f

with respect to p:

(28) f(x, y, y′) = f + fp(y
′ − p) +

1

2
fpp(y

′ − p)2 +
1

6
fppp(y

′ − p)3,

where f and its derivatives on the right hand side are evaluated at (x, y, p). Now

the right hand side of the last equation, evaluated at y=y(x), y′=y′(x), p=p(x),

is the right-hand side of the chain equation (26). It follows that if (y(x), p(x))

satisfy equations (26)–(27) then y(x) satisfies y′′(x) = f(x, y(x), y′(x)), as

needed.

Conversely, suppose f(x, y, p) is not polynomial in p of degree≤ 3. Then there

is a neighborhood U ⊂ R3 such that for all (x, y, p), (x, y, y′) ∈ U , with y′ 	= p,

equation (28) does not hold. It follows that the chains in this neighborhood do

not project to solutions of y′′ = f(x, y, y′).

Remark 3.8: One should also be able to prove Theorem 1 using the general

machinery of parabolic geometry concerning correspondence spaces [6, Section

4.4] and canonical curves [6, Section 5.3] in a way that may be readily generaliz-

able to other types of parabolic geometries and families of curves. Such a proof

would take us too far afield here, so we will take up this approach elsewhere.
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4. Examples of path geometries and their chains

In this section we illustrate the general theory of the previous section by deter-

mining explicitly the chains of some homogeneous path geometries. First, the

flat path geometry on RP 2, admitting an 8-dimensional symmetry group, then 3

of the items of Tresse’s classification [25] of ‘submaximal’ path geometries, i.e.,

those admitting a 3-dimensional group of symmetries. In each case we exploit

the symmetry to reduce the chain equations to determining null geodesics on a

group with respect to a left-invariant pseudo-Riemannian metric. Then a well-

known procedure reduces the equations to the Euler equations on the dual of

the Lie algebra of the group and are integrable.

4.1. The flat path geometry. Here M ⊂ RP 2 × (RP 2)∗ is the set of inci-

dent point-line pairs (q, �) (equivalently, the manifold F1,2 of full flags in R3)

and L1, L2 ⊂ TM are the tangents to the fibers of the projections onto the first

and second factor (respectively).

Proposition 4.1: For each non-incident pair (q∗, �∗) ∈ RP 2 × (RP 2)∗ \ M

consider the set of incident pairs (q, �) ∈ M such that q ∈ �∗, q∗ ∈ �. This is a

chain in M and all chains in M are of this form. See Figure 2.

q

�

q∗

�∗

Figure 2. Chains of the flat path geometry (straight lines).

To prove it, note that GL3(R) acts naturally on (M,L1, L2). We look for a

3-dimensional subgroup G ⊂ GL3(R) acting on M with an open orbit. Fixing a

point m0 = (q0, �0) ∈ M yields two left-invariant line fields L1, L2 ⊂ TG, given

by their value (L1)id, (L2)id ⊂ g, the Lie algebras of the stabilizers of q0, �0

(resp.). It is then easy to find left-invariant adapted coframes on G describing

L1, L2 and the associated Fefferman metric. We consider two such G: the

Heisenberg group and the Euclidean group.
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4.1.1. First proof of Proposition 4.1: via the Heisenberg group. Let H be the

set of matrices of the form

(29)

⎛
⎜⎝1 z y

0 1 x

0 0 1

⎞
⎟⎠ , x, y, z ∈ R.

Its Lie algebra h consists of matrices of the form

(30)

⎛
⎜⎝0 x1 x3

0 0 x2

0 0 0

⎞
⎟⎠ , xi ∈ R.

Let θi be the left-invariant 1-form on H whose value at id ∈ H is xi, i = 1, 2, 3.

Then

Θ :=

⎛
⎜⎝0 θ1 θ3

0 0 θ2

0 0 0

⎞
⎟⎠

is the left-invariant Maurer–Cartan form on H, satisfying dΘ = −Θ ∧ Θ, from

which we get

(31) dθ1 = dθ2 = 0, dθ3 = −θ1 ∧ θ2.

Identify R2 with an affine plane in R3, (x, y) �→ (y, x, 1). It is H-invariant, and

the resulting affine action on R2 is (x0, y0) �→ (x0+x, y0+ y+ zx0). This action

is transitive on R2 and transitive and free on the set M of incident pairs (q, �),

where q ∈ R2 and � ⊂ R2 is a non-vertical line through q. There are H-invariant

line fields L1, L2 ⊂ TM , where L1 (resp. L2) is tangent to the fibers of the

projection (q, �) �→ q (resp. (q, �) �→ �).

Let q0 = (0, 0), �0 = {y = 0} (the real axis). Let (X1, X2, X3) be the (left-

invariant) frame on H dual to (θ1, θ2, θ3). Then the Lie algebras (L1)id, (L2)id

of the stabilizers of q0, �0 are spanned by X1, X2 (resp.). Thus,

D = L1 ⊕ L2 = (θ3)⊥, L1 = {θ2, θ3}⊥, L2 = {θ1, θ3}⊥,
with an adapted coframe

η1 := θ1, η2 := θ2, η3 := −θ3.

Solving the structure equations (18)–(19), we get α = θ4, K = 0, where

θ4 = (ds)/s
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(the Maurer–Cartan form on R∗), which gives, using equations (20)–(21),

σ = −(2/3)θ4

and

(32) g = θ1 · θ2 + 2

3
θ3 · θ4.

Lemma 4.2: Null geodesics of (32), projected to H and passing through id ∈ H

at t = 0, are of the form

x = b(1− e−ct), y = −ab(1− e−ct), z = a(ect − 1), a, b, c ∈ R.

They correspond to chains (qt, �t) ∈ M , passing through (q0, �0) at t = 0,

where qt moves along the line �∗ through q0 of slope −a, and �t is a line

through qt and q∗ = (b, 0).

Proof. The metric (32) is a left-invariant metric on G = H×R
∗, with an inertia

operator A : g → g∗

A =
1

6

⎛
⎜⎜⎜⎝
0 3 0 0

3 0 0 0

0 0 0 2

0 0 2 0

⎞
⎟⎟⎟⎠ .

The geodesic flow on T ∗G projects via left translation to the Euler equations

on g∗, Ṗ = ad∗A−1PP , where ad∗X = (adX)t ∈ End(g∗), X ∈ g, P ∈ g∗

and adXY = [X,Y ]. These are the Hamiltonian equations Ṗ = {H,P} with

respect to the standard Lie–Poisson structure on g∗, where H = 1
2 (P,A

−1P ).

See [2, page 66]. Equivalently, Ẋ = A−1ad∗XAX . To write these down explicitly

with respect to our bases, we first represent X ∈ g and ad∗X ∈ End(g∗) by 4× 4

matrices

X =

⎛
⎜⎜⎜⎝
0 x1 x3 0

0 0 x2 0

0 0 0 0

0 0 0 x4

⎞
⎟⎟⎟⎠ , ad∗X = (adX)t =

⎛
⎜⎜⎜⎝
0 0 −x2 0

0 0 x1 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

so Ẋ = A−1ad∗XAX becomes

(33) ẋ1 =
2

3
x1x4, ẋ2 = −2

3
x2x4, ẋ3 = ẋ4 = 0.
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The general solution, with H = (AX,X)/2 = x1x2/2 + x3x4/3 = 0 (we are

interested in the zero level set because we are computing the null geodesics), is

(34) x1 = aect, x2 = be−ct, x3 = −ab

c
, x4 =

3c

2
,

where a, b, c ∈ R, c 	= 0. (In addition to these solutions there are some fixed

points, which we now ignore.)

Now let g(t) ∈ H × R∗ be a null geodesic, with

g(t) =

⎛
⎜⎜⎜⎝
1 z y 0

0 1 x 0

0 0 1 0

0 0 0 s

⎞
⎟⎟⎟⎠ , x, y, z, s ∈ R, s 	= 0.

Then X = g−1ġ ∈ g is given by (34). Explicitly,

(35) ẋ = x2 = b e−ct, ẏ − zẋ = x3 = −ab

c
, ż = x1 = a ect

(we do not need the s equation). Change the time variable to τ = ct, denoting

derivative with respect to τ by ( )′ and renaming the constants, a �→ a/c, b �→b/c,

we get

(36) x′ = be−τ , y′ − zx′ = −ab, z′ = aeτ .

Consider chains through id ∈ H, i.e., x0 = y0 = z0 = 0. Then z = a(eτ − 1),

hence y′ = zx′ − ab = −ab e−τ . The solution of (36) is then

x = b(1− e−τ ), y = −ab(1− e−τ ), z = a(eτ − 1).

Thus (x, y) traces a line of slope −a through the origin, and each line of slope z

through (x, y) passes through (b, 0).

4.1.2. Second proof of Proposition 4.1: via the Euclidean group. Here

M = P(TR2) = R
2 × P(R2)

is the set of pairs (q, �) with � a line through q, L1 ⊂ TM is tangent to the fibers

of the projection onto the first factor and similarly for L2. The group SE2 of

orientation-preserving isometries of R2 acts transitively onM , with stabilizer Z2

(reflection about a point), preserving L1, L2. Fixing a point (q0, �0) ∈ M identi-

fies M with SE2/Z2, and hence equips SE2 with left-invariant line fields L1, L2

given by a pair of 1-dimensional subspaces (L1)id, (L2)id, the Lie algebras of the

stabilizers of q0, �0 (resp.).
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Identify R2 = C with the affine plane z2 = 1 in C2, z �→ (z, 1); then SE2 is

identified with the subgroup of GL2(C) consisting of matrices of the form

(37)

(
eiθ z

0 1

)
, z ∈ C, θ ∈ R.

Its Lie algebra se2 consists of matrices of the form

(38)

(
ix1 x2 + ix3

0 0

)
, xi ∈ R.

Let θj be the left-invariant 1-form on SE2 whose value at id is xj , j = 1, 2, 3.

Then

Θ :=

(
iθ1 θ2 + iθ3

0 0

)

is the left-invariant Maurer–Cartan form on SE2, satisfying dΘ = −Θ∧Θ, from

which we get

(39) dθ1 = 0, dθ2 = θ1 ∧ θ3, dθ3 = −θ1 ∧ θ2.

Let X1, X2, X3 be the left-invariant vector fields on SE2 dual to θ1, θ2, θ3.

Let q0 = 0, �0 = R (the real axis). Then the Lie algebras of the stabilizers

of q0, �0 are spanned by X1, X2 (resp.). Thus

D = L1 ⊕ L2 = (θ3)⊥, L1 = {θ2, θ3}⊥, L2 = {θ1, θ3}⊥,
with an adapted coframe

η1 := θ1, η2 := θ2, η3 := −θ3.

Solving the structure equations (18)–(19), we get α = θ4, K = 0, where

θ4 = (ds)/s (the Maurer–Cartan form on R∗), which gives, using equations

(20)–(21), σ = −(2/3)θ4 and

(40) g = θ1 · θ2 + 2

3
θ3 · θ4.

This is a left-invariant metric on G = SE2 × R∗, with an inertia operator

A : g → g∗

A =
1

6

⎛
⎜⎜⎜⎝
0 3 0 0

3 0 0 0

0 0 0 2

0 0 2 0

⎞
⎟⎟⎟⎠ .
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The geodesic flow on T ∗G projects via left translation to the Euler equations

on g∗, Ṗ = ad∗A−1PP , where ad∗X = −(adX)t ∈ End(g∗). These are the Hamil-

tonian equations Ṗ = {H,P} with respect to the standard Lie–Poisson structure

on g∗, where H = 1
2 (P,A

−1P ). See [2, p. 66]. To write these down explicitly

with respect to our bases, we first represent X ∈ g and ad∗X ∈ End(g∗) by 4× 4

matrices

X =

⎛
⎜⎜⎜⎝

0 −x1 x2 0

x1 0 x3 0

0 0 0 0

0 0 0 x4

⎞
⎟⎟⎟⎠ , ad∗X = (adX)t =

⎛
⎜⎜⎜⎝
0 x3 −x2 0

0 0 x1 0

0 −x1 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

so Ṗ = ad∗A−1PP becomes

(41) Ṗ1 = −2P1P3 + 3P2P4, Ṗ2 = 2P2P3, Ṗ3 = −2P 2
2 , Ṗ4 = 0,

with constants of motion (in addition to P4),

H =
1

2
(P,A−1P ) = 2P1P2 + 3P3P4 = 0, k = (P2)

2 + (P3)
2.

Let us use polar coordinates in the P2P3-plane:

P2 = r cosφ, P3 = r sinφ.

Then

φ̇ = −2r cosφ, P1 = c tanφ, P4 = −2c/3, c = const., r = const.

Now let g(t) ∈ SE2 × R∗ be a null geodesic, with

g(t) =

⎛
⎜⎝eiθ z 0

0 1 0

0 0 s

⎞
⎟⎠ , z ∈ C, θ, s ∈ R

∗.

Let X = g−1ġ ∈ g. Then P = AX satisfies Euler equations (41). Explicitly,

θ̇ = x1 = 2P2 = −φ̇, ż = eiθ(x2 + ix3) = eiθ(2P1 + i3P4) = 2ceiθ(tanφ− i).

(The s equation is omitted; it will not be used.) Assume, without loss of

generality, that g(0) = id, i.e., θ(0) = 0 and z(0) = 0, so θ = φ0 − φ. We

reparametrize g(t) by φ, denote derivative with respect to φ by ( )′, and get

z′ = i(c/r)eiφ0 ż/φ̇ = i(c/r)eiφ0 sec2 φ.
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Integrating yields z = i(c/r)eiφ0 tanφ. Now we rotate the chain by −φ0, reflect

about the x-axis and rename c, so that

(42) z = ic tanφ, θ = φ, c ∈ R.

This corresponds to a chain (qφ, �φ), where qφ moves along �∗ = the y axis

and �φ is the line connecting q∗ = (−c, 0) with qφ.

4.2. Circles of fixed radius. Here M ⊂ C × C is the set of pairs of

points (p, q) with |p − q| = 1, L1, L2 ⊂ TM are tangent to the fibers of the

projection onto the first (resp. second) factor. The first projection maps the

fibers of the second projection to the set of plane circles of radius 1. The

group SE2 of orientation-preserving isometries of C = R2 acts transitively and

freely on M , preserving L1, L2. We use the same notation for this group as in

Section 4.1.2. Let p0 = 0, q0 = 1. Then the Lie algebras (L1)id, (L2)id of the

stabilizers of these points are spanned by X1, X1 −X3 (resp.). Thus

D = L1 ⊕ L2 = (θ2)⊥, L1 = {θ2, θ3}⊥, L2 = {θ2, θ1 + θ3}⊥,

with an adapted coframe

η1 := θ3, η2 := θ1 + θ3, η3 := −θ2.

Solving the structure equations (18)–(19), we get α = θ2 + θ4, K = −1,

where θ4 = (ds)/s (the Maurer–Cartan form on R∗), which gives, using equa-

tions (20)–(21), σ = −θ2/2− 2θ4/3 and

(43) g =
1

2
(θ2)2 + (θ3)2 + θ1 · θ3 + 2

3
θ2 · θ4.

This is a left-invariant metric on G = SE2 × R∗, with an inertia operator

A : g → g∗

A =
1

6

⎛
⎜⎜⎜⎝
0 0 3 0

0 3 0 2

3 0 6 0

0 2 0 0

⎞
⎟⎟⎟⎠ .

The geodesic flow on T ∗G projects via left translation to the Euler equations

on g∗, Ṗ = ad∗A−1PP . To write these down explicitly with respect to our bases,
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we first represent X ∈ g and ad∗X ∈ End(g∗) by 4× 4 matrices

X =

⎛
⎜⎜⎜⎝

0 −x1 x2 0

x1 0 x3 0

0 0 0 0

0 0 0 x4

⎞
⎟⎟⎟⎠ , ad∗X = (adX)t =

⎛
⎜⎜⎜⎝
0 x3 −x2 0

0 0 x1 0

0 −x1 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

so Ṗ = ad∗A−1PP become

(44)
Ṗ1 = 2P1P2 − 3P3P4, Ṗ2 = 2P3(P3 − 2P1),

Ṗ3 = −2P2(P3 − 2P1), Ṗ4 = 0,

with constants of motion (in addition to P4),

H =
1

2
(P,A−1P ) = −2P 2

1 + 2P1P3 + 3P2P4 − 9

4
M2

4 ,

r2 = (P2)
2 + (P3)

2.

We make the following change of variables:

(45) y = 4P1 − 2P3, P2 = r cosφ, P3 = −r sinφ, P4 = c/3.

Then (44) reduces to

(46) φ̇ = −y, ẏ = 4r(c− r cosφ) sin φ, c, r ∈ R, r ≥ 0,

and the nullity condition H = 0 becomes

(47) y2 = 8cr cosφ+ 4r2 sin2 φ− 2c2.

Remark 4.3: Equations (46) can be written as a single Newton type second

order ODE, φ̈ = f(φ), where f(φ) = 4r(r cosφ − c) sinφ. As usual, one can

write f(φ) = −U ′(φ), with

U(φ) = −4cr cosφ− 2r2 sin2 φ.

Then φ̇2/2 + U(φ) is constant along solutions of φ̈ = f(φ) (‘conservation of

energy’). Equation (47) fixes the value of this constant.

Now let g(t) ∈ SE2 × R
∗ be a null geodesic, with

g(t) =

⎛
⎜⎝eiθ z 0

0 1 0

0 0 s

⎞
⎟⎠ , z ∈ C, θ, s ∈ R

∗.
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Let X = g−1ġ ∈ g. Then P = AX satisfies (44). Explicitly,

ż = eiθ(x2 + ix3) = eiθ(3P4 + i2P1), θ̇ = x1 = −4P1 + 2P3.

Using the change of variables (45), we get

ż = eiθ[c− i(φ̇/2 + r sinφ)], θ̇ = φ̇,

where φ(t) satisfies equations (46)–(47). For a fixed φ(t) these equations are

invariant under rigid motions (adding a constant angle to θ, rotating z by this

angle and translating z by some constant vector). So we can assume, without

loss of generality, that θ = φ. Hence

ż = eiθ[c− i(θ̇/2 + r sin θ)], θ̇2 = 8cr cos θ + 4r2 sin2 θ − 2c2.

Next we use the scaling invariance, t �→ λt, c �→ λc, r �→ λr, to assume r = 1.

We can also use the reflection symmetry t �→ −t, θ �→ θ + π, z �→ −z, c �→ −c to

assume that c ≥ 0. Thus every chain, up to a rigid motion and reparametriza-

tion, is a solution to

ż = eiθ[c− i(θ̇/2 + sin θ)],(48)

(θ̇)2 = 8c cos θ + 4 sin2 θ − 2c2,(49)

with c ∈ R, c ≥ 0.

Lemma 4.4: Let F (θ, c) = 8c cos θ+4 sin2 θ− 2c2 (the right-hand side of equa-

tion (49)). Then F ≥ 0 has a solution if and only if |c| ≤ 4. For every c ∈ [0, 4]

the set of θ ∈ [−π, π] such that F (θ, c) ≥ 0 is an interval [−θmax, θmax],

where θmax = cos−1(c −√c2/2 + 1) ∈ [0, π]. For c ∈ (0, 4) every solution θ(t)

of (49) oscillates between −θmax and θmax. If c = 0 then lim θ is 0 or π

as t → ±∞. If c = 4 then θ ≡ 0.

Proof. We write F = −4x2 + 8cx+ 4− 2c2, where x = cos θ. The roots of this

polynomial are x± = c ±√1 + c2/2 and F > 0 in the interval (x−, x+). To

be able to solve for θ we need [x−, x+] to intersect the interval [−1, 1]. It is

elementary to show that this occurs if and only if |c| ≤ 4.

Proposition 4.5: Every chain of the path geometry of circles of radius 1 in the

Euclidean plane, up to an affine reparametrization and rigid motion, is given

by a unique solution of equations (48)–(49) with c ∈ [0, 4), z(0) = θ(0) = 0

(for c = 0 one should take θ(0) 	= 0, π).
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See Figure 3. The projection of the chains on the Euclidean plane (the

curves z(t)) look like inflectional elastica, but they are not (checked numerically).

c = 0

c = .5

c = 1

c = 1.5

c = 2.5

c = 3.5

c = 4

θ

θ̇

π
2

θmax

π

0 31 2 4

Figure 3. Chains of circles path geometry (solutions of equa-

tions (48)–(49)). Top left: plot of the maximum amplitude of

oscillation of θ as a function of the chain parameter c ∈ [0, 4].

Bottom left: phase curves of equation (49) for various c values.

Right: each red curve is the projection of the chain on the Eu-

clidean plane. The blue curve represents the projection of the

chain on the dual plane; it is formed by joining the tips of the

unit vectors in the direction θ at each point z of the red curve

(the thin blue lines).

Further properties/questions about these chains:

(1) From the pictures, z(t) + eiθ(t) (the red curve) is obtained from z(t) by

translation and parameter shift. Presumably, this comes out of equa-

tions (48)–(49). Is this a manifestation of the self-duality of this path

geometry? How exactly?
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(2) One should be able to write explicit solutions of equations (48)–(49)

using elliptic functions. See [24].

Note. One can write down an explicit general solution for the

case c=0 without any special functions, and one can verify analyti-

cally that the arcs are semicircles. So, as embedded submanifolds they

are C1 but not C2 at inflection points. In particular, the chain ODE is

not satisfied at these inflection points.

(3) Equation (49) is the equation of a pendulum under a strange force law:

f(θ) = 4(cos θ − c) sin θ,

with special initial conditions: θ(0) = 0, θ̇(0) = 8c − c2 (for c = 0 it is

the homoclinic solution of the pendulum equation θ̈ = 2 sin 2θ). Is there

a good mechanical/geometrical interpretation of this motion?

(4) The chains of this geometry project to a 1-parameter family of curves

in R2 (up to rigid motion). Is there a simple geometric description of

this family? Our first guess was elastica but it is not the case.

(5) In the pictures, there are points along z(t) at which θ(t) is the direction

of the tangent ż(t) (the inflection points of the red curves on the right

of Figure 3). Is this phenomenon unavoidable?

4.3. Hooke ellipses of fixed area. The manifold

M = {(x, y, E, F,G) ∈ R
5 | Ex2 + 2Fxy +Gz2 = 1, EG− F 2 = 1, E > 0}

parametrizes the set of incident pairs (r, E), where r = (x, y)t ∈ R2 \ 0 and E is

an ellipse centered at the origin (a ‘Hooke ellipse’) of area π.

Proposition 4.6: The path geometry in R2 \ 0 of Hooke ellipses of fixed area

is projective (the paths are the unparametrized geodesics of a torsion-free affine

connection).

Proof. As mentioned before, this is equivalent to showing that the associ-

ated ODE y′′ = f(x, y, y′) is cubic in y′. Let

H = {(E,F,G) | EG− F 2 = 1, E > 0}
be the path space. We parametrizeH by the upper half-planeR2

+={(a, b) |b>0},

(50) (a, b) �→ 1

b
(1,−a, a2 + b2).
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Hooke ellipses of area π are then given by equations of the form

(51) x2 − 2axy + (a2 + b2)y2 = b, a, b ∈ R, b > 0.

Assuming y = y(x) in this equation and taking two derivatives with respect

to x, we get

x− a(y + xy′) + (a2 + b2)yy′ = 0,

1− a(2y′ + xy′′) + (a2 + b2)[(y′)2 + yy′′] = 0.

Eliminating a, b from the last 3 equations and solving for y′′, we obtain

y′′ = (xy′ − y)3.

Another proof, more direct, consists of showing that Hooke ellipses of area π

are the (unparametrized) geodesics of a Riemannian metric in R2 \ 0, given in

polar coordinates by

ds2 = dr2/Δ2 + r2dθ2/Δ, Δ = 1 + cr2 + r4, c ∈ R.

See [3] for yet another proof, via equivalence with the path geometry of Kepler

ellipses of fixed major axis, which is projective since these are geodesics of the

Jacobi–Maupertuis metric of the Kepler problem.

Fefferman metric. Let L1 ⊂ TM be the tangents to the fibers of the projec-

tion on the first component, (q, E) �→ q, and similarly for L2. The group SL2(R)

acts transitively and freely on M via its standard linear action on R2, preserv-

ing L1, L2. Fixing a point (q0, E0) ∈ M identifies M with SL2(R), and L1, L2

with two left-invariant line fields on SL2(R), given at id ∈ SL2(R) by the Lie

algebras of the stabilizers of q0, E0, respectively.
The Lie algebra sl2(R) of SL2(R) consists of matrices of the form(

x1 x2

x3 −x1

)
, xi ∈ R.

The left-invariant sl2(R)-valued Maurer–Cartan form on SL2(R) is

(52) Θ = g−1dg =

(
θ1 θ2

θ3 −θ1

)
.

The Maurer–Cartan equation dΘ = −Θ ∧Θ gives

(53) dθ1 = −θ2 ∧ θ3, dθ2 = −2θ1 ∧ θ2, dθ3 = 2θ1 ∧ θ3.
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Fix q0 := (1, 0)t, E0 := {x2 + y2 = 1}. Then

(L1)id = Span

(
0 1

0 0

)
, (L2)id = Span

(
0 −1

1 0

)
, D = L1 ⊕ L2 = Ker(θ1).

An adapted coframe is thus

η1 = θ2 + θ3, η2 = θ3, η3 := −θ1.

We use this coframe to trivialize the associated R
∗-structure B � SL2(R)×R∗

and put the standard coordinate s on the R∗ factor. The associated 1-forms

on B are

ω1 =
1

s
(θ2 + θ3), ω2 = sθ3, ω3 = −θ1.

Solving the structure equations (18)–(19), we get

α = 2θ1 + θ4, a1 = 4/s2, a2 = 0, K = −2,

where θ4 = (ds)/s (the Maurer–Cartan form on R∗), which gives, using equa-

tions (20)–(21), σ = −θ1 − (2/3)θ4 and

(54) g = (θ1)2 + (θ3)2 + θ2θ3 +
2

3
θ1θ4.

Hooke chains (null geodesics of the Fefferman metric). The pseudo-

Riemannian metric (54) is a left-invariant metric on the Lie group

G := SL2(R)× R
∗.

Let g= sl2(R)×R be its Lie algebra and A : g→ g∗ the inertia operator corre-

sponding to the quadratic form (54); that is, g(X,Y )=(AX)Y, X, Y ∈g. Then

A =
1

6

⎛
⎜⎜⎜⎝
6 0 0 2

0 0 3 0

0 3 6 0

2 0 0 0

⎞
⎟⎟⎟⎠

(with respect to the basis {θi} and its dual). As in previous examples, the geo-

desic flow on T ∗G projects to Ṗ = ad∗A−1PP on g∗, the Hamiltonian equations

with respect to the standard Lie–Poisson structure on g∗ with Hamiltonian

H = 1
2 (P,A

−1P ). To write these down explicitly, we first represent X ∈ g
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and ad∗X ∈ End(g∗) by the matrices

X =

⎛
⎜⎝x1 x2 0

x3 −x1 0

0 0 x4

⎞
⎟⎠ , ad∗X =

⎛
⎜⎜⎜⎝

0 −2x2 2x3 0

−x3 2x1 0 0

x2 0 −2x1 0

0 0 0 0

⎞
⎟⎟⎟⎠ ,

so Ṗ = ad∗A−1PP becomes

(55)
Ṗ1 = 8(P2)

2, Ṗ2 = 2P2(3P4 − P1),

Ṗ3 = 2P1(P3 − 2P2)− 6P3P4, Ṗ4 = 0,

with constants of motion P4, k,H , where

(56) k = (P1)
2 + 4P2P3, H = 2P2P3 − 2(P2)

2 + 3P1P4 − 9P 2
4 /2 = 0.

Note that k is a Casimir of g∗ coming from the Killing form of sl2(R). We

set H = 0 since we are looking for null geodesics. Next we make the following

change of variables:

sP1 = b(c+ sinφ), P2 =
b

2
cosφ, P3 = b

(
cosφ− p

2

)
, P4 =

bc

3
.

We have k − 2H = b2, hence b is constant. Since P4 = bc/2 is constant c is

constant as well. Equations (55)–(56) then reduce to

(57) φ̇ = 2b cosφ, p = cosφ+ c(c+ 2 sinφ) secφ.

Next let g(t) ∈ SL2(R)× R∗ be a null geodesic, with

g(t) =

⎛
⎜⎝x z 0

y w 0

0 0 s

⎞
⎟⎠ , x, y, z, w, s ∈ R, s 	= 0, xw − yz = 1.

Let X = g−1ġ ∈ g. Then P = AX satisfies equations (55). Explicitly,

ẋ = x1x+ x3z = b[cx+ (cosφ)z], ż = x2x− x1z = −b[p x+ cz],

ẏ = x1y + x3w = b[cy + (cosφ)w], ẇ = x2y − x1w = −b[p y + cw],

where p, φ are given by equation (57). Denote r := (x, y), h := (z, w) ∈ R2,

then the last system is

(58) ṙ = b[cr+ (cosφ)h], ḣ = −b[pr+ ch].

Lemma 4.7: φ is twice the centro-affine arclength of the projection of the chain

to the Hooke plane (the r plane).
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Proof. r,h are the columns of a matrix in SL2(R), hence [r,h] = 1. It then

follows from equations (58) that [r, dr/dφ] = [r, ṙ/φ̇] = [r,h/2] = 1/2.

Let us reparametrize the chains by τ := φ/2 (the centro-affine arclength) and

denote derivative with respect to τ by ( )′. Equations (58) now become

(59)
r′ = c(sec 2τ)r + h,

h′ = −[1 + c(c+ 2(sin 2τ)) sec2 2τ ]r− c(sec 2τ)h.

Lemma 4.8:

r′′ = −r.

Proof. Straightforward calculation from equations (59).

Thus, combined with [r, r′] = 1 (Lemma 4.7), each Hooke chain projects to

a Hooke ellipse of area π in the r plane, as expected from Proposition 4.6 and

Theorem 1.

Proposition 4.9: Every chain in SL2(R) of the path geometry of Hooke el-

lipses of area π, up to left translation, is of the form

r = eiτ , h = eiτ (−c sec(2τ) + i)

(using complex notation), for some c ∈ R, c 	= 0. See Figure 4.

Figure 4. Hooke’s chains, given by Proposition 4.9, for c = −1, 1, 2.

Proof. SL2(R) acts transitively on Hooke ellipses of area π, hence the projection

of the chain to the r plane can be brought to the unit circle. Parametrized by

centro affine arc length, it is r = eiτ . Then the 1st equation of (59) implies

the formula for h(τ). For c = 0 this formula produces a curve tangent to the

contact distribution, which is excluded.
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4.4. Horocycles in the hyperbolic plane. The space of Hooke ellipses

is H = {(E,F,G) | EG − F 2 = 1, E > 0}, the hyperboloid model of the

hyperbolic plane. The curves in H of constant (hyperbolic) curvature 1 are

called horocycles and are the sections of H by planes parallel to a generator

of the cone EG− F 2 = 0. In the upper half-plane model these are (Euclidean)

circles tangent to the real axis.

Lemma 4.10: For each fixed (x, y) ∈ R2 \ 0, the set of Hooke ellipses pass-

ing through (x, y) is a horocycle in H. This defines a bijection between the

punctured plane R2 \ 0 and the space of horocycles in H.

Proof. For each (x, y) ∈ R2 \ 0, equation (51),

x2 − 2axy + (a2 + b2)y2 = b,

defines in the upper half-plane {(a, b) | b > 0} either the circle of radius 1
2y2

centered at (xy ,
1

2y2 ) if y 	= 0, or the horizonal line b = x2 if y = 0. These

are precisely all the horocycles of the upper half plane model of the hyperbolic

plane.

It follows that the horocycle path geometry in H is dual to the path geometry

in R2 \ 0 of Hooke ellipses of fixed area. Thus we can use the analysis of the

previous section to determine the projection of the chains to H.

Proposition 4.11: Each chain of the horocycle path geometry, up to the ac-

tion of SL2(R), projects to a curve in the hyperbolic plane, given in the upper

half-plane model {(x, y) | y > 0} by

(60)
(x2 + y2)2−[4cx+ (c2 + 4)y](x2 + y2) + (6c2 − 2)x2 + 2c3xy + 6y2

−4c(c2 − 1)x− (c4 − 3c2 + 4)y + (c2 − 1)2 = 0

where c 	= 0. See Figure 5. This curve is the projection of a chain in SL2(R), the

solution to equations (59) that passes through id ∈ SL2(R). The projection of

this chain to the Hooke plane is the Hooke ellipse (x− cy)2 + y2 = 1. The horo-

cycles along this chain, in the upper half-plane model, all pass through (c, 1), the

point corresponding to this Hooke ellipse. The chains corresponding to c and −c

are congruent via an outer automorphism of SL2(R) (conjugation

by diag(−1, 1) ∈ GL2(R)), acting by reflection about the y-axis.
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Figure 5. Horocycle chains, given by Proposition 4.11, pro-

jected to the hyperbolic plane (the upper half plane model),

are rational bicircular quartics. Left: Crunodal (one node),

|c| < 2. Middle: Cuspidal (one cusp), c = 2. Right: Acnodal

(smooth), |c| > 2.

Proof. Using r′′ = −r and r′ = c(sec 2τ)r+ h (Lemma 4.8 and equation (59)),

the chain g(τ) in SL2(R) with g(0) = id is

(61) g(τ) =

(
cos τ + c sin τ − sin τ(sec(2τ)c2 + tan(2τ)c+ 1)

sin τ cos τ − c sec(2τ) sin τ

)
.

The projection of this chain to H is obtained by acting by g(τ) on the point

in H corresponding to the Hooke ellipse E0 = {x2+y2 = 1}. One can check that

the parametrization of H by the upper half-plane in equation (50) is SL2(R)-

equivariant, so one can act instead by g(τ) via fractional linear transformations

on (0, 1), the point in the upper half-plane corresponding to E0. Reverting

to φ = 2τ , the outcome is

(x, y) =
(c2[(c+ 2 sinφ) cosφ− c− sinφ], −2 cos2 φ)

−2 cos2 φ+ c(c+ 2 sinφ) cosφ− c2
.

Eliminating φ in the above equation (we used Maple for this), one obtains

equation (60).

Remark 4.12: The curves of Proposition 4.11 are examples of bicircular quartics,

a remarkable class of plane curves introduced by J. Casey in 1871 [8]. See [27]

for a modern exposition. They have many equivalent geometric and algebraic

definitions, the simplest being the inversion of a conic (with respect to a circle).



38 G. BOR AND T. WILLSE Isr. J. Math.

References

[1] V. I. Arnol’d, Geometrical Methods in the Theory of Ordinary Differential Equations,

Grundlehren der mathematischen Wissenschaften, Vol. 250, Springer, New York, 1988.

[2] V. I. Arnol’d and A. B. Givental, Symplectic geometry, in Dynamical Systems. IV En-

cyclopaedia of Mathematical Sciences, Vol. 4, Springer, Berlin, 2001, pp. 1–138.

[3] G. Bor and H. Jacobowitz, Left-invariant CR structures on 3-dimensional Lie groups,

Complex Analysis and its Synergies 7 (2021), Article no. 23.

[4] G. Bor and C. Jackman, Revisiting Kepler: new symmetries of an old problem, Arnold

Mathematical Journal 9 (2023), 267–299.

[5] D. Burns Jr., K. Diederich and S. Shnider, Distinguished curves in pseudoconvex bound-

aries, Duke Mathematical Journal 44 (1977), 407–431.
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[17] C. L. Fefferman, Monge–Ampére equations, the Bergman kernel, and geometry of pseu-

doconvex domains, Annals of Mathematics 103 (1976), 395–416.

[18] K. Hughen, The geometry of subriemannian 3-manifolds, PhD. Thesis, Duke University,

Durham, NC, 1995,

https://pdfs.semanticscholar.org/4069/84ef45565eae1bfe4241e70eb3ed8b60f88b.

pdf.

[19] T. A. Ivey and J. M. Landsberg, Cartan for Beginners: Differential Geometry via Moving

Frames and Exterior Differential Systems, Graduate Studies in Mathematics, Vol. 61,

American Mathematical Society, Providence, RI, 2003.

[20] H. Jacobowitz, An Introduction to CR Structures, Mathematical Surveys and Mono-

graphs, Vol. 32, American Mathematical Society, Providence, RI, 1990.

https://arxiv.org/abs/1602.00913
https://pdfs.semanticscholar.org/4069/84ef45565eae1bfe4241e70eb3ed8b60f88b.pdf
https://pdfs.semanticscholar.org/4069/84ef45565eae1bfe4241e70eb3ed8b60f88b.pdf


Vol. TBD, 2024 CHAINS OF PATH GEOMETRIES ON SURFACES 39

[21] B. Kruglikov, Point classification of second order ODEs: Tresse classification revisited

and beyond, in Differential Equations: Geometry, Symmetries and Integrability, Abel

Symposia, Vol. 5, Springer, Berlin–Heidelberg, 2009, pp. 199-221.

[22] J. M. Lee, The Fefferman metric and pseudo-Hermitian invariants, Transactions of the

American Mathematical Society 296 (1986), 411–429.

[23] P. Nurowski and G. Sparling, Three-dimensional Cauchy–Riemann structures and

second-order ordinary differential equations, Classical and Quantum Gravity 20 (2003),

4995–5016.

[24] G. Pastras, Four Lectures on Weierstrass Elliptic Function and Applications in Classical

and Quantum Mechanics, https://arxiv.org/abs/1706.07371

[25] A. M. L. Tresse, Détermination des invariants ponctuels de l’équation difféentielle ordi-
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